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Abstract. Propagation of plane acoustic waves in misotropic media can be characterized by 
the slowness surface and ray surface which represent plwse velocities and m u p  velocities. 
resprcnvrly. The mathematicd expressions for the slowness surface m t e m  ofelastic constnnts 
are well established and provide a foundation for acoustic determination of the elastic constants 
of anisotropic elastic media. However, B direct mathematical formulation of lhe ray surface has 
not k e n  fully developed because of the many-to-one correspondence between the my surface 
and the Slowness surface. Based upon the S m h  formalism far two-dimensional elastodynamic 
systems. we establish in this paper a direct md analytical formalism. the degeneracy analysis 
approach (DAA), for the construction of the ray surface and the recovely of elastic constants for 
anisauopic media. A special emphasa is put on the group velocities dong symmetry directions 
with respect to symmetry planes. for which an explicit expression for the group velocity is given 
in terms of the elastic constants so that the inverse problem can be solved easily Pwicularly. 
the complication of cuspidal points due to the presence of axial concavity in the slowness surface 
is treated md it is apparent that the presence of a cuspidal point becomes an advantage far the 
inverse problem of recovery o f  elastic constants 

1. Introduction 

The determination of elastic constants of anisotropic media from acoustic wave experiments 
is usually based on the phase velocity measurement. The main reason for this is that 
there exist straightforward and explicit analytical relations between the elastic constants 
and the phase velocity c or the slowness s = c-I which determines a slowness surface 
s(R) = c-I(R)k, where IC is the unit wave-vector. In contrast, the group velocity is seldom 
used for such a purpose because the theoretical investigations of the group velocity ug have 
not been able to provide a practical and direct formulation for the relation between the 
elastic constants and the group velocity up which determines the ray surface r ( g )  = ug@)g 
or inverse ray surface u;](g)g, where g is the unit ray-vector [ I ,  21. 

Basically, for a bulk wave with the wave-vector k and the phase velocity c,  its associated 
ray-vector g and group velocity ug are not necessarily identical to k and c respectively. 
Instead, there exist relations ug = c /  c o s 4  and 4 = cos-'(g. k ) ,  where 4 is the inclination 
angle of the wave-vector IC from the ray-vector g. Such a difference between the slowness 
surface and the ray surface leads to distinction between direct and inverse problems based 
on phase velocity measurements and based on group velocity measurements. 

0953-8984/95/203863+18$19.50 @ 1995 IOP Publishing Ltd 3863 
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The direct and inverse problem for phase velocity measuremcnts is well established. 
The analytical solution of the Christoffel equation makes the direct approach very simple, 
i.e., given the elastic constants, the Christoffel equation will yield three sheets of slowness 
surface where the phase velocity is expressed explicitly as a function of the wave-vector 
k; the density p will enter only as a simple scaling factor. The inverse problem has also 
been studied extensively in  connection with recovering elastic constants from phase velocity 
measurements. So far. the best inverse approach suggested can determinc not only the elastic 
constants but also the crystallographic orientation of samples 13, 41. 

However, the direct and inverse problems for the ray surface in connection with group 
velocity measurements have not been developed to the same extent. A little has been 
achieved developing straightforward direct and inverse formulations for the group velocity 
and the ray surface, that is, given the elastic constants, the group velocity is derived as a 
function of ray-vector g, and conversely, given group velocity for any direction g the elastic 
constants can be recovered. Up to now, even the direct formulation has been addressed 
in a rather indirect fashion: for given elastic constants, the ray surface (group velocity) 
is indirectly deduced from the slowness surface (phase velocity) in terms of parametric 
equations of the wave-vector k, instead of in terms of the ray-vector g [ l ,  21. This is 
inconvenient when it comes to solving the inverse problem. 

There are many difficulties in deriving straightforward direct and inverse formulations 
related to the ray surface. The ray surface has a high number of degrees of freedom, 
up to 150, while the slowness surface has only six. This is so because of the generic 
relation between the two surfaces which is polar reciprocal. According to the theory of 
characteristics for hyperbolic differential equations. the inverse ray surface ui' (g)g, as a 
bicharacteristic surface of the Christoffel equation, is the pedal of the slowness surface [ l ] .  
We notice that the term pedal implies that dimensionality is involved in the construction 
of the ray surface [5 ] .  In the two-dimensional case the pedal can be associated with the 
tangent line over a slowness curve [ I ] ,  while in the three-dimensional case the pedal is 
related to the tangent plane over the slowness surface [ I ,  61. In this sense, we need to make 
a distinction between the ray surface for the three-dimensional case and the ray cunle for the 
two-dimensional case. Terminologically, the term ray surface refers to the ray curve when 
the dimensionality consideration is obvious. In this paper, we will use the term ray surface 
to refer to the ray curve in the two-dimensional case throughout our discussion except for 
cases mentioned explicitly. The term slowness surface is also used for the description of 
the slowness curves as used in most of the literature. 

Even for two-dimensional cases, the presence of concavities in the slowness surface will 
cause the ray surface to be multivalued. Such a one-to-many correspondence betwecn the 
slowness surface and the ray surface, is a major obstacle for the many attempts to discuss 
the direct problem analytically and it also complicates the inverse problem. Many studies 
have resorted to other alternatives. Recently. measurements of group velocities using the 
so-called point sourcelpoint receiver method have been reported [7, 8, 91 and the recovery 
of elastic constants has been carried  out using selected group velocity measurements and 
optimization methods [IO] which are very sensitive to selected values of the elastic constants. 

In this paper, we intend to solve both the direct and the inverse problems regarding 
the ray surface and recovery of elastic constants from group velocity measurements in two- 
dimensional cases (line source) and to makc the methods applicable to three-dimensional 
cases (point source) also. The essential physical and mathematical basis is the Stroh 
eigenvalue formalism and degeneracy analysis of the pedal construction. In section 2 we will 
briefly review the Stroh formalism and its relation to the slowness surface and the inverse 
ray surface, and provide a general direct approach for analytical and numerical calculation 
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of the group velocity and the ray surface. Such a general approach has the advantage that it 
allows one to obtain the group velocity ug as well as the inclination angle 4, and it  can also 
provide a scheme for recovering the slowness surface by the pedal construction applied to 
the ray surface [I]. In section 3, we will present explicit analytical formulations for group 
velocity in some symmetry directions with respect to symmetry planes. from which solutions 
for the inverse problem follow immediately. Emphasis is put on the discussion of group 
velocities for pure modes and cuspidal points. It turns out that the presence of a cuspidal 
point becomes an important advantage for the purpose of recovering elastic constants. For 
the cases where the ray-vector directs along off-symmetry directions, we implement the 
degeneracy analysis numerically, which enables us to recover all the elastic constants even 
when there is no concavity in the slowness surface or when the concavity is centred along 
the off-symmetry direction with respect to the symmetry plane. 

2. The degenerate Stroh formalism and group velocity 

Let us first ask, for a given ray direction. say a unit ray-vector g .  what is the group (ray) 
velocity ug along this direction and what is the phase velocity U of the corresponding plane 
wave’? For the plane wave solution in two-dimensional systems, it is known that the unit 
wave-vector k of a plane wave would have an inclination angle 4 from the direction g, 
and the phase velocity c and the group velocity up obey the relation c = up cos$. In a 
two-dimensional system, we can define two mutually orthogonal unit vectors, m and n, 
with m parallel to g. so that the wave-vector k for the bulk plane waves can be expressed 
by k = c o s 4  m + s i n 4  n, and lo . g = cos&, where the angle 4 is the inclination angle. 
We will show later that 4 is a special value associated with the degeneracy of the Stroh 
eigenvalue problem and. only under such a degenerate case, the unit ray-vector g and the 
vector m are parallel and 4 represents the inclination angle. 

2.1. Standard Stroh formalism [I!, 121 

In a general sense, we will consider a wave with the wave-vector k = m t p n  with a 
displacement field described by 

(2.1) 

where k and U are the wave-number and the velocity, and A is the polarization vector. 
Generally, we take p as a complex number. Clearly, when p is real, (2.1) describes a bulk 
(homogeneous) wave propagating along k, and when p is a complex number it represents an 
inhomogeneous wave whose amplitude will attenuate or amplify exponentially with distance 
normal to the plane n.z = 0, depending on the sign of Im p .  We denote the space spanned 
by m and n as the reference plane. 

uix, r )  = A exp[i k(m. 2 + p n  . x - ur ) ]  

Substitution of (2.1) into the equation of motion 

will lead to 

Q(kk)A = {(mm) + p [ ( m n )  + (nm)] t p2(nn))A = PU*A (2.3) 
where the ( m n )  etc are matrices whose components are defined as (mn),k = m,C,jkpzc, etc. 

The solutions for (2.3) are determined from the characteristic equation 

R = Il(mm) + p[ (mn)  t (nm)] + p 2 ( n n )  - pu’lll = 0 (2.4) 
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which is a sixth-order equation in p and it  will yield six complex roots p.. 01 = I ,  , . . , 6, 
which, for sufficiently small value of U (or lower than slowest bulk wave velocity ii), appear 
in three complex conjugate pairs. When we increase the velocity U, a certain pair of the 
eigenvalues will turn real. For example, the pair P I  and p z  for U < C, where pz  = p;, 
will become real roots PI = tan41 and p2 = tan42 respectively with increasing velocity to 
U > ii. 

The solution for a real eigenvalue has a straightforward geomewical interpretation as 
shown in figure I(a) (line L), that is. the real eigenvalues are tangents of the angles from 
the direction m for two bulk waves along k1.2 = cos41 ,zm + s in41 ,zn ,  and their phase 
velocities are given by q , ~  = ulcosq51.z according to (2.1). Their ray-vectors will be 
directed along :he normal of the slowness surface and have components along both m and 
n. 

(4 (b) (c) 

Figure 1. Geometric interpretation of the S m h  eigenvalues and slowness surfaces and their 
relations to phase velocity and group velocity: (a) bulk wave solutions associated wilh U-’ 
mxked by the line L whose myvectors are parallel to the normal of the slowness surface. and 
the degenerate Solution with 6 at gives the group velocily vg = d for the wave with IC 
at an inclination angle 6 from ray-vector g; (b) pedal conswuclion for three successive group 
velocities related 10 the ray direction m or 9; (c) two cuspidal points (C) associated with the 
double tangent lines L’ and Lz with respect to ray directions normal to L’,’ respectively and a 
tangential acoustic axis dong the venicd a i s  ( ~ 9  

In non-dissipative elastic media. the direction of the ray-vector g is aligned along the 
energy flux. To study the energy flux, we have to consider the traction vectors associated 
with the bulk wave solutions from (2.4). It is easy to show that the traction vector L, in 
the plane n .z = 0 associated with the displacement A. can then be expressed as 

(2.5) 

and thus the component of the energy flux along the n direction j,, is proportional IO A,. L,. 
If a special real eigenvalue is such that = tan$ then j, - A, . L, = 0, and j and g will 
be parallel to m, 

Stroh [ I  1 I introduced a six-dimensional eigenvalue problem by defining six-dimensional 
eigenvectors tu = (Aa,  and reformulated equations (2.3) and (2.5) into a standard 
eigenvalue problem, 

L, = - [ (nm)  + p,(nn)lA, 

When there is no degeneracy in the eigenvalue problem (2.6), the Stroh eigenvectors 

A , . L p + L , . A p = & p  f o r a = I ,  .... 6. (2.7) 

fulfil the orthogonality relation 
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and when non-semisimple degeneracy occurs in a complex conjugate pair or in a real pair, 
say p. = pg  = $ real, where $ = tang, and Ag + A,, Lp + L, and as pg -+ p m .  the 
orthogonality relation (2.7) gives 

A, . L, = 0. (2.8) 

Thus we see that the situation . L, = 0 is just a degeneracy 6 = tan$ in the Stroh 
eigenvalue equation (2.6), and the wave with k = cos$ m + sin $ n will have its energy 
flux or ray-vector g parallel to m. This is just the case illustrated by the line L1 in figure 

The Stroh eigenvalues, unlike the eigenvalues of the Christoffel equation, can be 
complex. For a given velocity U. not all the Stroh eigenvalues are necessarily real. The 
eigenvalues can only become real when the vertical lines, like those in figure 1, have 
intersected the slowness surface. The number of real eigenvalues is the same as the number 
of intersections. The remaining eigenvalues will be complex. When a line touches the 
slowness surface tangentially, the real eigenvalue is duplicate degenerate. 

1 (a). 

2.2. Group welocity 

The degeneracy point pc = pg = 6 and its associated self-orthogonality (2.8) is a 
pivotal point in the discussion of group velocity. At such a degeneracy point, G-' = U;] 
implies that the energy flux component j .  associated with the bulk wave with wave-vector 
k = cos$ m + sin$ n vanishes and g is directed along m, and thus the velocity U is 
the group velocity ug for the bulk wave and the real eigenvalue j = tan $ determines the 
inclination angle $ between wave-vector k and the ray-vector g which is parallel to m when 
the degeneracy occurs. In other word, the group velocity is associated with a degeneracy 
(real number) of the Stroh eigenvalue equation. 

Geometrically, the group velocities can be interpreted in the following way. Consider 
a slowness plot of the three slowness surfaces with respect to the reference plane (m, n), 
and draw a series of vertical tangent lines (see L'.2.3 in figure I(b)) parallel to n whose 
position is marked by U;'. This is exactly a pedal construction. For every single tangent 
point, the two Stroh eigenvalues, say, pI = tan@] and pl = tan@2 for the two bulk waves 
in figure I(a), have approached the same value 

Note that the degeneracy in the above case is of multiplicity two. In the Stroh formalism, 
the eigenvalues can degenerate up to multiplicity six [12]. This implies that the group 
velocity may have a multivalued relation to the geometry of the slowness surface, as 
illustrated in figure I(c), where there are two bulk waves with same group velocity. 

One typical case, frequently encountered, is the group velocity related to a concavity 
of the slowness surface where a double-tangent construction as illustrated by the lines L' 
and L2 in figure l(c) implies that there are two degeneracies which occur simultaneously, 
i.e. p, = pz = tan$ and p3 = p4 = -tan$. The group velocity for such a case appears in 
the ray surface as a cuspidal point C. The neighbouring configuration of the concavity will 
result in a cusp in the ray surface, and the tip of the cusp is related to a triply degenerate 
Stroh eigenvalue. 

Another case is the group velocity associated with a tangential acoustic axis [13]. 
The tangential acoustic axis is the direction along which two slowness surfaces coalesce 
tangentially. Along the acoustic axis, as shown by the line L3 in figure I(c), the Stroh 
eigenvalue will be degenerate with multiplicity four, p1 = pz = p3 = p4 = 0. 

=tan+ at U;' and U;' = c-' cos$. 



3868 Litian Wang 

2.3. Ray surfnce and slowness surface 

In the Stroh formalism, the ray surface and the slowness surface are interconnected. 
For any given ray direction m, every solution for U related to real eigenvalues 

p = tan@ will define a bulk wave with phase velocity c = ucos@ and its wave-vector 
k = cos @ m -+ sin @ n. Therefore, the slowness surface can be constructed by solving the 
Stroh eigenvalue equation under a single reference orthogonal dyad (m. n). 

In order to construct a ray surface, one has to vary the velocity term puz in the Stroh 
eigenvalue equation (2.3), and to trace the group velocities associated with degeneracies 
(i.e., pedal constructions) for all ray directions, i.e., for all vectors m. 

This completes the discussion of the analytical scheme for calculation of the ray surface 
and the slowness surface based on the Stroh formalism. It is shown that the Stroh formalism 
can be used to derive the group velocity and ray surface in a direct way. The solution of the 
Stroh eigenvalue problem can give both group velocity and inclination angle, and it enables 
us to obtain the slowness surface in  a n  alternative way from that based on the Christoffel 
eigenvalue equation. 

One should notice that the non-semisimple degeneracy of the Stroh eigenvalue equation 
is different from the semisimple degeneracy in the Christoffel equation. In the Christoffel 
equation, a semisimple degeneracy suggests a so-called acoustic axis around which the 
polarization vectors are discontinuous. However, the eigenvectors near a non-semisimple 
degeneracy in the Stroh equation will remain continuous. This is a important distinction 
berween the two equations. 

It should be acknowledged that, in two-dimensional systems, the ray surface and the 
group velocities related to the outer slowness sheet (surface) have been discussed in terms 
of the transonic states in surface wave theory [IZ], where many analytical and numcrical 
calculations have been performed for a wide range of cubic and transversely isotropic 
media [ 14. 15, 16, 171. 

3. Group velocity in symmetry planes: the degeneracy analysis approach (DAA) 

In the preceding section, we outlined the physical and mathematical basis for the 
determination of group velocity with respect to the reference plane (m, n) in terms of the 
Stroh eigenvalue formulation. We now substantiatc this idea and establish some concrete 
relations between the group velocity and the elastic constants in anisotropic media. We 
concentrate on group velocities related to various configurations of the ray surface in 
some typical symmetry planes of orthotropic media where explicit analytical results can be 
reached. We first construct a Cartesian coordinate system (ez, e,, e,) which is coincident 
with the orthorhombic crystallographic basis [ IOO]. [OlO]; [OOl] and we focus on the group 
velocities i n  the (100) plane of orthotropic media; results for other symmetry planes can be 
readily obtained in a similar fashion. 

It is well known that in symmetry planes the slowness surfaces can be described by 
an elliptic sheet and two non-elliptic sheets [ I ,  21. The elliptic sheet represents the out-of- 
plane (purely transverse) polarized waves and the non-elliptic sheets describe the in-plane 
polarized waves. In other words, the eigenspace for the Christoffel and the Stroh eigenvalue 
equations decomposes into a one-dimensional out-of-plane subspace and a two-dimensional 
in-plane subspace with respect to the symmetry plane [17, 181. This makes it  possible for 
us to derive some explicit expressions for the group velocities in symmetry planes. As for 
the group velocity, we adopt the term pure mode to characterize a bulk wave whose phase 
velocity and group velocity are identical in direction as well as in magnitude. 
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3.1. General formulation for orthotropic media: (100) plane 

For the (100) plane in orthotropic media, defining m = cosrpe, + sinrpe,, n = 
sinpe, - cosrpe,. as shown in figure 2 where the direction [Ool] or eL IS associated 
with rp = O”, we get from (2.3). 

0 

Q = ( ?  0 Q? Q4 :a) 423 
(3.1) 

where 

Q ,  = (css cosz p + c66 sin’ p) + (2656 cosp sin rp)p + (c66 cos’q + c55 sin’ q)p2 (3 .2~)  

Qz = (cacos2rp +czZsinZrp) +(2h4~co~rpsinrp)p t ( c ~ ~ c o s ~ q + c ~ s i n ’ p ) p ~  (3.2b) 

QJ = (c33 cosz p + cu sin’ rp) + (2634 cosp sin p)p + (cu coszp + c33 sin’ p)p2 (3 .2~)  

Q4 = d ~ c o s r p s i n q + d ~ ( s i n ~ p  -cos*p)p -dl(cosrpsinrp)g’. (3.2d) 

Here dl = ca+cz3 and Aki = Ckk -c,i. In orthotropic media, there are nine independent 
elastic constants. but only a limited number of independent elastic constants are involved in 
the (100) plane: five diagonal elements and one off-diagonal element, denoted as c,, and 
c,( respectively. Thus, the corresponding characteristic equation (2.4) becomes 

(3.3a) R(p. U ,  p) = det(Q - pu’b = FI(P ,  U ,  p) Fz(p. U, rp) = 0 

It is obvious that, with respect to the reference plane (m. n), the eigenspace for the 
Stroh eigenvalue equation is decomposed into an out-of-plane part and an in-plane part, and 
that FI  is related to transversely (out-of-plane) polarized waves belonging to the elliptic 
(slowness) sheet while Fz is related to in-plane polarized waves belonging to the two 
non-elliptic (slowness) sheets [15]. According to the analysis in the previous section, the 
group velocities (U,) can be determined from (3.3b) and (3 .3~)  in relation to the degenerate 
eigenvalues p for a given direction p. 

3.1.1. We first consider the 
transversely polarized elliptic sheet shown as the middle slowness surface in figure 2(a). 
From (3.3b), setting F l (p ,  U ,  p) = apz + bp + c = 0, we have a pair of Stroh eigenvalues 

Group velocity relared ro the out-ofplane elliptic sheet. 

p = [ -b  i (bZ - 4a~) l ’~] / (2a)  (3.4) 

(3.5a) 

and degeneracy is only possible when b2 - 4uc = 0, i.e., 

pu i  = C55C66/(C66 COSz p + C55 Sin’ 9) 
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(b) 
Figure 2. Slowness surface m d  its associated inverse ray surface in the symmetry (100) plane 
of an orthotropic media: (a) three sheets of slowness surface and group velocitics along the 
symmetry a i s .  together with the tangent line marked by L1,2,3: (b) resultant three sheell of 
inverse my surface with respect to the plane. "he middle sheer is the elliptic sheet and the imer 
and outer sheets are the non-elliptic sheets. 

which is consistent with the result of Musgrave [ I ]  ((8.2.2b) or (9.3.6)) and Chadwick [ 151 
(8.7). It also shows that both the elliptic slowness surface and i t s  associated inverse ray 
surface u;'((p) form ellipses. The inclination angle 6 will be given by 

6 = t an4  = -b/(&) = A ~ c o S ~ s i n p / ( c ~ c o s Z p + c ~ ~ s i n 2 C o )  (3.5b) 

which is consistent with the results of Musgrave [ I ]  (equation (8.2.4)). The equations (3.5) 
describe the group velocity and the inclination angle for the entire transverse elliptic sheet. 

Particularly, along e, (9 = 0") and e, (9 = 90") axes, we have two pure modes with 
group velocities 

(3 .6)  

and it is also readily seen that when A65 = 0 (cs5 = c s ) .  the slowness surface and the 
ray surface for the elliptic slowness sheet will become identical circles and the waves of 
the entire sheet will be pure modes, that is, 4 = 0 (figure 2(b)). The group velocity 
is a single-valued function of ray direction m and this is a one-to-one correspondence 
between the slowness surface and the ray surface. When the two elastic constants (diagonal 
element coo) are equal, both slowness surface and ray surface will become circles and the 

2 2 
P'J[C01](100) =c51 PV[olq(100) = c66 6 = tan6 = 0 
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waves of the entire sheet will be pure modes. Regarding the recovery of elastic constants, 
the group velocity measurements in the vicinity of the symmetry axis, say, [OOI], with 
respect to the plane. will yield results for both elastic constants. Namely, for CO = 0' one 
gets pu2(Oo) = c55. and in its neighbourhood, 'p # O", the group velocity u((p)  will give 
c66 = csspuZ(p) sin2'p/(c55 - puz(q) cosz'p) according to (3.5a). 

3.1.2. Group velociy related to the in-plane non-elliptic sheets. For the two in-plane non- 
elliptic sheets, the Stroh eigenvalues are determined by Fz(p ,  U. (p) = 0 according to ( 3 . 3 ~ )  
which is a fourth-order equation of p .  The degenerate real eigenvalues can be traced by 
increasing the velocity U, and it  is almost impossible to obtain an analytical expression of 
the group velocity for the entire sheet. Under the presence of a concavity in the slowness 
surface. the ray surfaces related to these two sheets may have up to eight degree of freedom 
because for a straight line there are at most eight intersections over these two ray surfaces. 
(In the three-dimensional case, it should be 4 x 3' = 36 [5]. )  But, we can at least examine 
the group velocity along the symmetry direction, along the eL axis ((p = 0') and the e,  axis 
('p =go"), respectively. 

Group velocities along [ O O l J ( l O O )  direction. From (3.2) and (3.3c), setting 'p = 0". we get 

F?(p ,  U ,  Oo) = (CM + ~ ' ~ 2 2  - pu2)(c33 + p 2 c 4  - p ~ ' )  - p2d: = 0 (3.7) 
and it  can be rewritten as 

F ~ ( P .  U .  0") = C Z Z C U P ~  + [ C Z Z ( C ~  - PU') + C M ( C M  - PU') - d: ]pz  
+(c33 - P U 2 ) ( C M  - P U 2 )  

= A p 4 +  BpZ + C =O. (3.8) 
When piNZ # c33 and pu2 # cM.  the two pairs of the Stroh eigenvalues must satisfy the 
expression 

p2(u) = I-B f (B' - 4AC)"2]/(2A) (3.9) 
and then the condition for degeneracy must be BZ - 4AC = 0. Thus 

B Z - 4 A C = G 1 = 0  c2 = tanZ $ = - B / ( 2 A )  = G:! 
F 4  - C I A  = tanJ$ - C I A  = G3 = 0. 

(3.10) 

The first relation GI = 0 in (3.10) yields the equation 

[c2Z(c33 - d) c44(c44 - pu2) - (c44 c23)zlz = 4cZZC44(c33 - pu2)(c44 /?U2) .  

(3.1 In)  

We denote the velocity determined by (3.1 l a )  uo. This velocity is the group velocity 
associated with the cuspidal points C in the outermost double tangent parallel to the e ,  
axis, like the case shown by line L' in figure 2. 

We also notice that by setting B = 0 we get puZ = ( ~ ~ 2 ~ 3 3  + c h  - d 2 ) / ( c 2 2 + c ~ )  which 
is identical to the results of Musgrave (p 103 [ I ] ) .  But such a situation could not ensure 
the presence of degeneracy (since p4 = -CIA)  and thus the result from B = 0 will not 
yield group velocity for the cuspidal point C. 

The second relation in (3.10) Gz gives 

6' = tan23 = [ ( c a  + cz3Y - c22(c33 - pu,') - c d c u  - p u $ 1 / ( 2 c z z c ~ )  

which describes the inclination angle between the wave-vector k and the ray-vector 9. 

(3.11b) 
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The third relation in (3.10) GJ = 0 gives 

(3.1 I C )  

which indicates the simple relation between the group velocity uo and the inclination angle 
4, The three relations obtained from the condition of degeneracy (3.10) define both the 
group velocity and the inclination angle for the cuspidal point, 

The remaining situations are related to the case C = 0 in (3.Q which implies that there 
exist degenerate eigenvalues pz = 0. These cases give pure mode sohtions and the group 
velocities for the pure modes are be given by pv2 = ~ 3 3 ,  c ~ .  Suppose c13 > ca.  the group 
velocity for the pure mode associated with the outer slowness sheet will be 

pu2 = C# (3.12) 

2 2 cnca tan4 4 = (cl3 - puO)(caz - PU,) 

and thus. from (3.8), 

F2(P, U. 0”) = C44CZZP4 + [C22(C33 - c44) - (c44 + czd 2 IP 2 - 0  - (3.13) 

which means the group velocity defined by (3.12) is associated with degeneracy for 5’ = 0. 
The two remaining non-degenerate eigenvalues will be 

(3.14) 
If the eigenvalues from (3.14) are real, then two bulk wave solutions, as indicated by open 
circles in figure 2(a) associated with PI = p +  = t an@]  and p2 = p- = tan &, will suggest 
that the outer slowness sheet must be concave (see also line Lz in figure 2(a)). If, on the 
other hand, p is complex, the outer slowness sheet will be convex. Thus, a condition for 
the concavity is 

(3.15) 
which is consistent with (3.11b) and agrees with the results of Musgrave ((8.3.4) i n  [I]). 
For the pure mode associated with the inner slowness sheet (see line L3 in figure 2), the 
group velocity is given by 

P U Z  = cs3 (3.16) 

f3 = &{[(c* + cn)2 - CZZ(C3l - C44)l/(C44C2*)1”2. 

(c44 + C d  > CZZ(C33 - c44) 

and from (3.8), 

FdP. U. ul)  = C44CIIP4 + [C44(C44 - PL’? - (E44 + c23)21$ = 0 (3.17) 

which again means the group velocity defined by (3.16) is associated with degeneracy p = 0. 
The two remaining non-degenerate eigenvalues will be necessarily real because Aj4 > 0 
and 

(3.18) p = M ( C 4 4  + C d 2  + c44(c33 - E44)1/(CIIC44~1”*. 

Similarly, when c~ > c33, we will get the condition for the concavity as 

(c44 + cnY > Cer(C44 - c33) (3.19) 

which is easy to prove. 
In the above analysis, many characteristic points in the ray surface have been identified 

in the presence of an axial concave region in the slowness surface. These points are the 
pure mode points, the cuspidal point and the entire transverse elliptic sheet, From group 
velocities related to these characteristic points we can determine virtually all six elastic 
constants involved in the plane. To be explicit, along a symmetry axis, we can always obtain 
three diagonal elements c,, from pure mode measurements, among which are one normal 
and two shear stiffness constants. The measurement of group velocities for the transversely 
polarized elliptic sheet will determine another diagonal shear constant c~,,. Subsequently, the 
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group velocity uo for the cuspidal point itself alone can provide a relation (3.1 la) between 
the remaining diagonal element coo and the only off-diagonal element Cn6 (CZZ and c a  in 
the (100) plane case). This relation is one of the most important ones we have obtained 
so far. For the cuspidal point, if we can determine the inclination angle 4 experimentally, 
(3.1 IC) will give the remaining diagonal element c,," (here CZZ) and thus (3.1 la) determines 
the off-diagonal element uniquely. Of course, all the diagonal elements c,, can be 
determined from pure modes and thus utilizing (3.1 l a )  the determination of off-diagonal 
elements also becomes possible. In summary, for group velocities for the [OOl](lOO) case, 
we have 

(3.20) 

where the first three diagonal elements c,, are associated with group velocities of the pure 
modes, c.56 pertains to the transverse elliptic sheet and cz3 and czz are related to the cuspidal 
point. It is clear that all six elastic constants involved in the (100) plane can be recovered 
from group velocities and inclination angle with respect to the plane. 

Group velocities along [OlO]( lOO)  direction. For the group velocities along the e, 
direction, by setting p = 90", the analysis is similar to that for the et direction in the 
(100) plane. Similarly to the equations (3 . l l ) ,  (3.121, (3.151, (3.16), (3.19), we get for the 
cusp 

2 2 Pu[wt](lw) = (c33, c44. cS5lpure mode. [C66lellips sheet, [Puo(cU), c22(~)lcuip 

[C33(C22 - Pu;, i cql(c44 - pu;, - (c44 i C23)*12 = 4c33c44(c22 - PU$)(C44 - Pug, 

c ~ ~ c ~ ~ ~ I I ~ $  = (cZz - P U ; ) ( C ~  - PU,) 
$ = tan2 6 = [(CM + c23Y - C33(c22 - PU,') - c++(ca - PU,Z)]/(~C~~CU) (3.21) 

2 

and for the pure modes 

Pv:0101~1oo~ = c22. Pu[0101(Iw) 2 = c44 (3.22) 

while for the concavity 

(CM + CZ# > C ~ ( C Z Z  - c++) 

(CM + ~ 2 3 ) '  > C J ~ ( C M  - c22) 

when czz =- cql 

when c e  > c22. 
(3.23) 

and the group velocities along the direction will be 

Pup[oi(lw) 2 = [c22. C44, C661pure mode, [~SS1eIlip$ sheerl [Pu:(c23)1 C33(4)leusp. (3.24) 

The advantage of the e, direction is that the propagation along this direction will remain 
non-degenerate for the tetragonal and transversely isotropic media. 

The above is just the result for symmetry directions [OOl] and [OlO] with respect to 
(100) symmetry plane. Similarly we can find group velocities for other symmetric directions 
with respect to the two main symmetry planes in orthotropic media, namely, [001](010), 
[lOO](OlO), [100](001), [010](001). Here we just sum up all the final results for further 
discussion. 
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pU[[m](o(o) 2 = [ C l l r  c55, C661pure mode. [C44lellips. rhea$, [ P U i ( c l S ) .  C33($)lcusp (3.28) 

(3.29) 

(3.30) 

The essence of the present analysis is the degeneracy in the Stroh eigenvalue equation, 
and we call such a scheme the degeneracy analysis approach ~~ (DAA). As for the inverse 
problem, the relations we have established so far provide us with an effective and practical 
tool to recover the elastic constants, One can observe that. under certain circumstances (for 
example. when there exist axial concavities along the [Ool] direction with respect to (100) 
and (010) planes), the group velocities and the inclination angles for a single direction enable 
us to determine up to eight elastic constants among nine independent constants. All nine 
elastic constants for orthotropic media can be recovered from group velocity measurements 
for two symmetry directions if there are some axial concavities present and both the group 
velocities ug and the inclination angles $ for cuspidal points can be determined. In the cases 
where there is no axial concavity at all, which is very likely, group velocities for all three 
directions could only provide enough relations for recovering all the diagonal elements. We 
will show in the next subsection that the remaining off-diagonal elements can be recovered 
from group velocities along the directions in the neighbourhood of the symmetry directions. 

1 pu[oto)(m[) = IC223 c661 C44lpure mode. [c551eIlip. shceti bvo(cIZ)+ CIl($)Imsp 

pU(lm](ml) 2 = [ C l l .  C66r cS5]pure moder [CUlellips, sheer. bui(cl’2), c22($)lcusp. 

3.2. Off-symmetric cases: numerical implementation 

There are some cases that have not been mentioned in the earlier discussion, namely, 
the group velocities associated  with^ off-symmetr). directions and concavities centred at off- 
symmetry directions. In these cases, the main concern is to determine off-diagonal elements 
related to the two non-elliptic sheets. Therefore, we now return to the general discussion 
in section 2 and resume degeneracy analysis in an arbitrary ray direction p in a symmetry 
plane. This is particularly important to the cases when there is no axial concavity exists 
along the symmetry direction. 

Now we re-examine equation (3.3) for the in-plane non-elliptic sheets. The polynomial 
FZ = Fz(p ,  U ,  ~ . c , , . c ~ ~ ) .  for a given measured group velocity U along an arbitrary 
direction + and with all c,, known, will become a very simple fourth-order polynomial of 
p with coefficient as functions of an off-diagonal element cod. Then cad must be such that 
the equation Fz(p ,  ens) = 0 does yield at least one pair of degenerate roots. 

The most essential feature for the ray surface is that the group velocity is related to 
a degenerate solution of the Stroh eigenvalue equation. Notice that an imaginary root ( p )  
represents an evanescent wave, a real root ( p  = tan+) represents a bulk wave and a pair 
of real degenerate roots (6 = t an+)  represents a bulk wave solution for the group velocity. 
Since the group velocity may be associated with various types of envelope construction as 
indicated i n  figure 3, where only two in-plane non-elliptic sheets are illustrated, we will 
categorize the various possible cases which are physically significant to the inverse problem. 

We first investigate the group velocities related to the outer in-plane non-elliptic sheet. 

( I )  Symmetric concavity: Fz(p ,c ,e )  = ( a l p 2 +  cl)2 -0 with two pairs of degenerate 
real eigenvalues, identical but opposite in sign, such that PI  = pz = tan41 and 
p? = p4 = -tan@!. This is related to a symmetric concavity where a double tangent 
with equal inclination angles can be constructed. (See line LI in figure 3.) 

(2) Asymmetric concavity: F2(p. cos) = (alp2 + blp + cl)’ = 0 with two pairs of 
degenerate real eigenvalues, such that pI = pz = tan61 and p3 = p4 = tan&. This is 



Ray surface and elastic constants of anisotropic ehstic media 3875 

Figure 3. Geomeme interpretation of various pedal consmctions with respect to a symmetry 
plane and the group velocities related to the non-elliptic slowness sheets (here only these two 
sheets are dmwn): (+o) group velocities for symmetric and asymmetric directions: (d) the 
cesnlt3nt tnverse ray surface. Various lines L repraent the relationship between different group 
velocities and their phase velocities, and the filled circles represent the bulk wave solutions 
associated with a given ray-vector 9. 

related to an asymmetric concavity where a double tangent with different inclination angles 
can be constructed. 

(3) Convex case: F&, cos) = (alp + c ~ ) ~ ( a 2 p ~  + bzp + c2) = 0 with one pair of 
degenerate real eigenvalues and one pair of non-degenerate complex conjugate eigenvalues. 
This is associated with the group velocity related to the outermost part of a concavity. This 
is also valid for the case when there is no concavity in the slowness surface. (See line Ls 
in figure 3.) 

(4) Convex case: F*(p.  c,,&) = (alp + cl)2(a2pz + b2p + c2) = 0 with one pair 
of degenerate real eigenvalues and one pair of non-degenerate real eigenvalues. This is 
associated with the group velocity related to the inner convex part of a concavity. (See line 
L4 in figure 3.) 

(5 )  Concave case: Fz(p ,  cos) = (alp + c1)2(azp2 + bzp  + c2) = 0 with one pair 
of degenerate real eigenvalues and one pair of non-degenerate real eigenvalues. This is 
associated with the group velocity related to the inner concave part of a concavity. (See 
line LS in figure 3.) 

(6) Cuspidal tip case: F2(p, c , ~ )  = (alp + ~ l ) ~ ( a z p  + cz) = 0 with three identical real 
eigenvalues (triplicate degeneracy), and one real eigenvalue, say, = p2 = p s  = tandl 
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and p 4  = tan 
(See line Lb in figure 3.) 

It is associated with an inflectional zero-curvature point of a concavity. 

For the group velocities related to the inner in-plane non-elliptic sheet, since i t  is globally 

(7) Convex case: Fz(p,c,~) = (alp + c ~ ) ~ ( a z p ~  + bzp + c2) = 0 with one pair of 
degenerate real eigenvalues and one pair of non-degenerate real eigenvalues. (See line 
L7 in figure 3.) The group velocity related to the inner slowness sheet is important for 
experimental convenience because of the higher accuracy in the determination of group 
velocities for fast waves. 

In all cases, for a given direction rp and a given (measured) group velocity ug with 
respect to a symmetry plane, with all the diagonal elements c,, known from pure mode 
measurements, we can determine the remaining off-diagonal element endr which is related 
solely to the in-plane non-elliptic sheets, by numerical substitution of c , ~  so that the 
condition for the relevant situation of the situations (1)-(7) is satisfied at the the point 
(ug,  p) of interest. Eventually, we will have recovered all elastic constants involved in a 
symmetry plane even without presence of an axial concavity, and further all nine elastic 
constants of orthotropic media. 

Of course, one can determine the remaining off-diagonal element by solving the Stroh 
eigenvalue equation numerically when all the diagonal elements are known. But explicit 
formulation of FZ has an advantage even when one has one diagonal element unknown. Wc 
can still find out certain useful relations by constructing the resultant polynomial from two 
Fz related to two angles or two sheets or a relation like (3.1 la ) .  We will not pursue such 
a special scheme further here. 

In the (100) plane, we assume the group 
velocities along an angle 9i are U ,  and uz and related to an outer and inner slowness 
surface, respectively. which are both globally convex. When all diagonal elements c,, 
are known from pure mode measurements, we will have F2 = F2(ulr p. E = )  = 0 and 
F2 = FZ(UZ. p, CZ?) = 0 for U, and uz respectively. According to the above analysis, case 
(3) and case (7), Fz(u , ,  p, cz)) = O~should yield one pair of real eigenvalues and one pair 
of non-degenerate complex conjugate eigenvalues. and FZ = Fz(v2. p. CZ?) = 0 should 
yield one pair of real eigenvalues and one one pair of non-degenerate real eigenvalues, 
respectively. By numerical substitution of c23, we c a n  have it  uniquely determined, and the 
results for c23 obtained from these two group velocities should be identical. Of course, the 
eventual estimate for cz3 can be further calibrated by scanning over more data points from 
group velocity measurements. 

Apart from the inverse problem. the DAA can also be adopted as a practical scheme 
for locating the pure mode direction for which j = t an6  = 0 and j*" = 0 (where 
n = I ,  2,3),  and the exponent n represents the multiplicity of the pure mode. For example, 
when puZ = c4.,, the [OOl] direction in the (100) plane in tetragonal media is a pure mode 
direction where j 4  = 0 and such a multiply degenerate solution for the group velocity is 
related to both the outer sheet and the elliptic sheet. 

convex everywhere, we have only one case for this sheet. 

Here we can consider a simple case. 

4. Illustrative examples 

We now demonstrate two examples of application of DAA scheme to two orthotropic media: 
or-uranium and oak [ 11. In tables 1 and 2, we list some details of the inverse scheme for 
recovering elastic constants from group velocities and inclination angles. We start with 
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a set of elastic constants and calculate the slowness surface, ray surface and inclination 
angles, and set numerical data for group velocity and inclination angles into the relations 
we established in section 3 and have the elastic constants recovered. 

For wuranium (see table l), there exist two axial concavities along [OOl](lOO) and 
[OlO](lOO) and one non-symmetric concavity in the (010) plane (see figures 9.31-9.33 
i n  [ 11). The nine elastic constants can be recovered by measuring the group velocity in all 
three main symmehy directions, although there are axial concavities present in the slowness 
surface. 

Along the [001](100) direction and its vicinity (see the first column of table l ) ,  one 
can completely determine six elastic constants from the pure modes, transverse sheet and 
cuspidal point. The numerical scheme is also tested to recover c23 when cu is known 
beforehand. The same applies to the [OlO](lOO) direction (see the third column of table I ) .  
The other columns show results for the remaining four cases. One should notice that certain 
diagonal constants c,, must be given so that the numerical calculation of the off-diagonal 
constant c , ~  can be determined when there is no axial concavity, such as the case in the 
[OlO](lOO) direction (see the second column of table I). For this reason, in the table we 
made some remarks on a certain direction along which a complete (or incomplete) recovery 
is possible and therefore it is the most preferred direction (with two asterisks). 

Table 1. Onholropic a-uranium: cit = 21.5. c22 = 19.9, a33 = 26.7. c u  = 12.4. 
c ~ ~ = 7 . 3 0 , c ~ ~ = 7 . 4 0 , c ~ ~ = 4 . 6 0 , u 1 ~ = 2 . 2 0 . c ~ = 1 0 . 7 .  

Pure mode c33 = 26.7 
cqq = 12.4 
css = 7.30 

Ellips. sheet c66 = 7.40 

Cusp. point = IO 34 
,$ = 31.3" 
c2:23 = 10.1 
e22 = 19.9 

$0 = 10.0= 
e23 = 10.7 
Complete 

Num. calc. pu2 = 27.07 

Pref. dir. ** 

c33 = 26.7 
c u  = 12.4 
CIS = 7.30 

cm = 7.40 

pu2 = 25.79 
$0 = I O . O C  

c13 = 2.20 
Incomplete 
* 

c n  = 19.9 
cqq = 12.4 
cgs = 7.40 

CIS = 7.30 

p$ = 9.26 
,$ = 29.4 

c33 = 26.7 

pu2 = 12.90 
$0 = 10.0' 
c23 = 10.7 
Complete 

c21 = 10.1 

** 

c22 = 19.9 
cqq = 12.4 
c66 = 7.40 

L'SS = 7.30 

pu2 = 19.87 
$0 = 10.05 
CIZ = 4.60 
lncomplete 
* 

C I I  =21.5 C I I  =21.5 
CIS = 7.30 css = 7.30 
cn6 = 7.40 q g  = 7.40 

aM = 12.4 c u  = 12.4 

pv2 =21.16 pu2 =21.36 
q = 10.0c p = 10.00 
~ 1 %  = 2.20 c11 =4.60 
Incomplete Incomplete 

The example of oak, also an orthotropic medium ( see  table 2), has two axial concavities 
along [OOI] and [OlO] with respect to the (100) plane and two axial concavities along [loo] 
and [OIO] with respect to the (001) plane. Table 2 (see the third and fourth columns of table 
2) shows that the group velocities for the [OIO] direction can give eight elastic constants 
leaving only c13 undetermined. The constant cI3 can be determined subsequently from, for 
example, the vicinity of [OOl](OlO) direction. We also notice that c23 and c12 are the same 
in value, but this does not necessarily mean that group velocities for the cuspidal points in 
the two planes are identical since c33 and c , ,  are different. This can also be observed in 
the point source case in the [OIO] direction. 

However. if the inclination angle 4 for the cuspidal point cannot be determined, the 
relevant diagonal constant must be determined from measurements in all three symmetry 
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Tablc 2. Orthotropic o&: C I  I = 0.305. cz? = 0.138. eu = 0.682, a d  = 0.780, 
css = 0.132. q6 = 0.400, CIZ = 0.103, ~ $ 3  = 0.150, czg = 0.103, 

[ O O U  [OlOl [IO01 

(100) (010) (100) (00 I ) (010) (001) 

Puremode c,.~=O.682 cu=O.682 czz=O.l38 ca=0.138 c11=0.305 CII =0.305 
cw = 0.780 cu = 0.780 c u  = 0.780 CM = 0.180 css = 0.132 CIS = 0.132 

- 

css = 0.132 

Ellips sheet c66 = 0.400 

Cusp. poinr pu: = 0.255 
4 = 50.2' 
'13 =0.103 
m =0.138 

Num. ale. puz = 0.705 
'p = 10.0 
cz, = I .03 
Complete 

Pref. dir. 

c55 = 0.132 

CM = 0.400 

CM = 0.400 

css = 0.132 

c u i  =0.102 
.$ = 24.8L 
e13 = 0.103 
ci i  = 0.682 

rp = IO.O* 

Incomplete Complete 

pv' = 0.653 ~ pu2 = 0.794 
rp = 10.0 
Cl]  =0.150 c u  = 0.103 

t ** 

CM = 0.400 

css = 0.132 
= 0.073 

c66 = 0.400 

CU = 0.780 

.$ = 32.9' 
CIZ = 0.103 
c11 = 0.305 
pu2 = 0,408 pv2 = 0.310 
'p = 10.0; rp = 10.0 
CII =0.103 c13=0.150 
Complete Incomplete 
** 

CM = 0.400 

CSI = 0.780 

4=45.1i 
eii=0.103 
CIZ =0.138 

pu' = 0.411 
(0 = l0.W 
C I Z  = 0.103 
Complete 

p u ~ = O . I I I  

directions, and then the off-diagonal elements can be determined afterwards. For example, 
one can determine all the diagonal elements from pure modes along all three directions 
and afterwards recover off-diagonal elements from numerical calculation in the vicinity of 
symmetry directions. 

5. Discussions 

The DAA provides a direct scheme to determine group velocities together with inclination 
angles as well as an inversion procedure for recovering elastic constants of anisotropic media. 
But it  has also a minor disadvantage, namely, the high number of degrees of freedom of the 
ray surface (which may be up to eight for the ray surface for two non-elliptic sheets in the 
two-dimensional case considered) prevents us from obtaining general explicit expressions 
for the group velocity and the inclination angle for an arbitrary direction in a symmetry 
plane. 

For elastic media with higher elastic symmetry, such as tetragonal. transversely isotropic, 
cubic and isotropic media, the DAA can be readily applied. However, onc has to do the 
analysis in other symmetry directions and symmetry planes, such as (1 10) directions and 
{ I  IO) planes. Thus is because the independent elastic constants in these media are fewer with 
increasing symmetry and the symmetry directionsiplanes we considered become equivalent. 
So far, we have considered most of the low-index symmetry (or pure mode) directions and 
symmetry planes in the media with higher elastic symmetry (to be presented elsewhere). 

Concerning the application of the DAA to practical inversion, we make the following 
comments on the relationship between the present formalism and experimental realizations. 

( I )  In the line source cases to which DAA applies, recovery of elastic constants from 
group velocity data of one symmetry plane can be carried out in three steps: (i) group 
velocities for pure modes give at most three diagonal elements; (ii) the ray surface for the 
elliptic sheet will give another diagonal element; (iii) the group velocity and its associated 
inclination angle for the cuspidal point will determine one more diagonal element and one 
off-diagonal element, and even i f  the inclination angle is not available, the off-diagonal 
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element can still be recovered when all the diagonal elements are determined from pure 
mode measurements for other directions: (iv) after we run through all the main symmetry 
planes and symmetry directions we can have all the diagonal elements recovered together 
with the off-diagonal elements related to axial concavities when they exist. 

In some cases, the procedure becomes very simple. In cubic media, for example, a 
single measurement along a symmetry axis [OOI], when there is an axial concavity, will 
determine all three elastic constants. 

(2) The presentation of DAA is mainly for the two-dimensional system, and we have 
assumed that the line source lies noma1 to the symmetric reference plane (m. n). Therefore, 
the group velocity for the cuspidal point is dependent on the plane in  which the inclination 
angle is defined. However, the validity of the DAA results still holds for the point source 
situation. The reason is that the group velocities obtained for the symmetry plane are 
embedded in the ray surface. In other words, the ray surface constructed from tangent 
planes for the three-dimensional case will include the ray surface obtained from the two- 
dimensional pedal construction. The ray surface for the three-dimensional case may include 
more branches than that for the two-dimensional case when there is a concavity in the 
slowness surface. Physically, the group velocity and energy flux for the bulk wave 
propagating in the symmetry plane will be confined within the symmetry plane and the 
ray surface thus will be identical to the sheet for the three-dimensional situation. 

Application of a point source has the advantage that it is efficient for group velocity 
measurements when there are axial concavities present. For example, i f  the two ug for 
the cuspidal points [OOl](lOO) and [OOl](OlO) are different (since the three-dimensional 
ray surface will be multivalued) the two uo can be determined from a single measurement 
along [OOI]. On the other hand, a disadvantage is the complexity of the ray surface in off- 
symmetry directions. This causes difficulties in accurate measurements of group velocities 
for slow waves (related to the outer non-elliptic sheet) even along pure mode directions and. 
sometimes, only the group velocity for fast waves (related to the inner non-elliptic sheet) 
can be recorded accurately. 

6. Conclusions 

The characteristic surfaces for acoustic bulk wave propagation in anisotropic media, the 
slowness surface and the ray surface, are investigated in terms of the Stroh formalism for 
two-dimensional elastodynamics. By examining the degeneracy of the Stroh eigenvalue 
equation, the degeneracy analysis approach (DAA) for the construction of the ray surface is 
established. The main advantage of DAA is that it gives both the group velocity and the 
bulk wave inclination angle for a given direction. 

The present investigation focuses on explicit mathematical relations between the ray 
surface and elastic constants for some symmetry directions with respect to symmetry planes. 
In symmetry planes, the group velocity and inclination angle for the elliptic slowness sheet 
(related to out-of-plane transversely polarized waves) can be derived explicitly for the entire 
sheet. In the presence of axial concavity in the outer non-elliptic slowness sheet in the 
symmetry planes, there will be cuspidal points in the ray surface, and application of DAA 

to the cuspidal point and the pure modes can recover eventually all the elastic constants of 
media with orthotropic (and higher) elastic symmetry. The analytical relations between 
group velocities and elastic constants for orthotropic media are verified by illustrative 
examples. 

Although analytical results are obtained only for some symmetry directions, a practical 
numerical scheme for off-symmetry directions is presented complementarily, which enables 
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us to deduce some off-diagonal elastic constants under certain circumstances. For practical 
applications, the relation between the line source case and point source caSe is particular 
important. We expect that the present formalism can be adopted in the general discussion 
of ray surfaces in the three-dimensional case, and especially for the media with high elastic 
symmetry. 
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